Three additional families of Lagrangian surfaces of constant curvature in complex projective plane

B.-Y. Chen*
Department of Mathematics, Michigan State University, Well Hall, East Lansing, MI 48824-1027, USA

Received 24 March 2005; accepted 5 April 2005
Available online 31 May 2005

Abstract

Three additional families of Lagrangian surfaces of constant curvature in complex projective plane $C P^{2}(4)$ shall be added to the list of Theorem 1 in my article [B.-Y. Chen, Classification of Lagrangian surfaces of constant curvature in complex projective planes, J. Geom. Phys. 53 (2005) 428-460]. © 2005 Published by Elsevier B.V.

MSC: 53D12; 53C40; 53C42
$J G P$ SC: Differential geometry

Keywords: Lagrangian surface of constant curvature; Complex projective plane

1. Three additional families

Beside (1)-(29), the following three families of Lagrangian surfaces of constant curvature shall be added to the list in Theorem 1 of my earlier article [1].

[^0](30) Lagrangian surfaces of positive curvature b^{2} defined by $\pi \circ L$ with
$$
L=\left((\sin b s)^{1-\mathrm{i} a b^{-1}},(\cos b s)^{1-\mathrm{i} a b^{-1}} z(t)\right)
$$
with $a=\sqrt{1-b^{2}}, b \in(0,1)$, and $z(t)$ is a unit speed Legendre curve in $S^{3}(1) \subset$ \mathbf{C}^{2}.
(31) Lagrangian surfaces of negative curvature $-b^{2}$ defined by $\pi \circ L$ with
\[

$$
\begin{aligned}
L= & \left(a \cosh b s+\mathrm{i} \sqrt{c^{2}-a^{2} \sinh ^{2} b s}\right)^{a / b} \\
& \times\left(\frac{z(t) \sinh b s}{\mathrm{e}^{\mathrm{i} b^{-1} c \tanh ^{-1}\left(c \cosh b s / \sqrt{c^{2}-a^{2} \sinh ^{2} b s}\right.}},\right. \\
& \frac{\sqrt{b^{2}+c^{2}-\sinh ^{2} b s} \mathrm{e}^{-\left(\mathrm{i}^{2}\left(b^{2}+c^{2}\right) /\left(b^{2}\left(a^{2}+c^{2}\right)\right)\right) \cot ^{-1}\left(b \cosh b s / \sqrt{\left.c^{2}-a^{2} \sinh ^{2} b s\right)}\right.}}{\left.\sqrt{b^{2}+c^{2}}\left(a^{2}+c^{2}\right)^{a / 2 b} \mathrm{e}^{\left.\left(\mathrm{i} c^{2} /\left(b^{2}\left(a^{2}+c^{2}\right)\right)\right)\right) \tan ^{-1}\left(b \cosh b s / \sqrt{\left.c^{2}-a^{2} \sinh ^{2} b s\right)}\right.}\right),}
\end{aligned}
$$
\]

where c is a positive number, $a=\sqrt{1+b^{2}}$ and $z(t)$ is a Legendre curve of constant speed $\left(a^{2}+b^{2}\right)^{-a / 2 b}$ in $S^{3}(r) \subset \mathbf{C}^{2}$ with radius $r=\left(a^{2}+c^{2}\right)^{-a / 2 b} / \sqrt{b^{2}+c^{2}}$.
(32) Lagrangian surfaces of negative curvature $-b^{2}$ defined by $\pi \circ L$ with

$$
\begin{aligned}
L= & \left(z(t)\left(a+\mathrm{i} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)^{a / b} \mathrm{e}^{(a+b) s-\mathrm{i} b^{-1} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}},\right. \\
& \left.\frac{\left(c^{2}-\mathrm{e}^{2 b s}\right)\left(c^{2}-2 \mathrm{e}^{2 b s}\left(a^{2}+\mathrm{i} a \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)\right)^{a / 2 b}}{c^{(a+b) / b}\left(c^{2}-\mathrm{e}^{2 b s}\left(a^{2}+b^{2}+2 \mathrm{i} b \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)\right)^{1 / 2}}\right),
\end{aligned}
$$

where c is a positive number, $a=\sqrt{1+b^{2}}$ and $z(t)$ is a Legendre curve with speed $\mathrm{e}^{\theta(t)} c^{-a / b}$ in $S^{3}(r) \subset \mathbf{C}^{2}, r=c^{-1-a / b}$.

2. Remarks

We follow the same notation as [1]. For Case (I.ii.b.2.3) in article [1], the solution (5.56) of system (5.55) is degenerated whenever $c^{2}=a^{2}$. So Case (23) in Theorem 1 of [1] occurs only under the condition $a^{2} \neq c^{2}$.

When $a^{2}=c^{2}$, system (5.55) reduces to

$$
\begin{align*}
& L_{s s}=\mathrm{i} a(\tan b s-\cot b s) L s-L, \quad a=\sqrt{1-b^{2}}, \quad L_{s t}=(\mathrm{i} a-b) \tan b s L_{t}, \\
& L_{t t}=(b+\mathrm{i} a) \sin b s \cos b s L_{s}+\mathrm{i} f(t) L_{t}-\cos ^{2} b s L \tag{2.1}
\end{align*}
$$

After solving the first two equations of this PDE system we obtain

$$
\begin{equation*}
L=c_{1}(\sin b s)^{1-\mathrm{i} a / b}+z(t)(\cos b s)^{1-\mathrm{i} a / b} \tag{2.2}
\end{equation*}
$$

for some constant vector c_{1} and vector function $z(t)$. By substituting (2.2) into the last equation in (2.1) we have $z^{\prime \prime}(t)-\mathrm{i} f(t) z^{\prime}(t)+z(t)=0$. By applying these and the metric tensor of the Lagrangian surface we may obtain $|z|=\left|c_{1}\right|^{2}=\left|z^{\prime}(t)\right|=1$ and $\left\langle c_{1}, z\right\rangle=$ $\left\langle c_{1}, \mathrm{i} z\right\rangle=\left\langle z^{\prime}, \mathrm{i} z\right\rangle=0$. Hence we obtain Case (30) after choosing suitable initial conditions.

For Case (1.ii.b.4) the following two metric tensors shall also be considered:

$$
\begin{align*}
& g=\mathrm{d} s \otimes \mathrm{~d} s+\sinh ^{2}(b s+\theta(t)) \mathrm{d} t \otimes \mathrm{~d} t \tag{2.3}\\
& g=\mathrm{d} s \otimes \mathrm{~d} s+\mathrm{e}^{2 b s+2 \theta(t)} \mathrm{d} t \otimes \mathrm{~d} t \tag{2.4}
\end{align*}
$$

If (2.3) holds, Eq. (5.34) of [1] yields $\mu^{2}=p^{2}(t) \operatorname{csch}^{2}(b s+\theta(t))-a^{2}$ with $a=$ $\sqrt{1+b^{2}}$ for some $p(t)>0$. Since $\mu=\mu(s)$, we see that $p(t) \operatorname{csch}(b s+\theta(t))$ depend on s. Thus $p(t)$ and $\theta(t)$ must be both constant as in Case (1.ii.c.1) of [1]. So we may assume $\theta=0$ by applying a suitable translation. Let us denote the constant p by c. Thus the PDE system corresponding to (5.72) of [1] becomes

$$
\begin{align*}
& L_{s s}=\mathrm{i} \frac{c^{2} \operatorname{csch}^{2} b s-2 a^{2}}{\sqrt{c^{2} \operatorname{csch}^{2} b s-a^{2}}} L_{s}-L \\
& L_{s t}=\left(\mathrm{i} \sqrt{c^{2} \operatorname{csch}^{2} b s-a^{2}}+b \operatorname{coth} b s\right) L_{t} \\
& L_{t t}=\left(\mathrm{i} \sqrt{c^{2}-a^{2} \sinh ^{2} b s}-b \cosh b s\right) \sinh b s L_{s}+\mathrm{i} f(t) L_{t}-\sinh ^{2} b s L \tag{2.5}
\end{align*}
$$

with $a=\sqrt{b^{2}+1}$. After solving the first two equations of this system we obtain

$$
\begin{align*}
L= & \left(a \cosh b s+\mathrm{i} \sqrt{c^{2}-a^{2} \sinh ^{2} b s}\right)^{a / b} \\
& \times\left\{\frac{z(t) \sinh b s}{\mathrm{e}^{\mathrm{i} b^{-1} c \tanh ^{-1}\left(c \cosh b s / \sqrt{c^{2}-a^{2} \sinh ^{2} b s}\right)}}\right. \\
& +c_{1} \frac{\sqrt{b^{2}+c^{2}-\sinh ^{2} b s} \mathrm{e}^{-\left(\mathrm{i} a^{2}\left(b^{2}+c^{2}\right) / b^{2}\left(a^{2}+c^{2}\right)\right) \cot ^{-1}\left(b \cosh b s / \sqrt{\left.c^{2}-a^{2} \sinh ^{2} b s\right)}\right.}}{\left.\mathrm{e}^{\left(\mathrm{i} c^{2} / b^{2}\left(a^{2}+c^{2}\right)\right) \tan ^{-1}\left(b \cosh b s / \sqrt{\left.c^{2}-a^{2} \sinh ^{2} b s\right)}\right.}\right\}} \tag{2.6}
\end{align*}
$$

for some vector $c_{1} \in \mathbf{C}^{3}$ and vector function $z(t)$. By substituting (2.6) into the last equation in (2.5) we obtain

$$
z^{\prime \prime}(t)-\mathrm{i} f(t) z^{\prime}(t)+\left(b^{2}+c^{2}\right) z(t)=0
$$

Since $|L|=\left|L_{s}\right|=1,\left|L_{t}\right|=\sinh b s$ and $\left\langle L_{s}, \mathrm{i} L_{y}\right\rangle=0$, we obtain from (2.6) that

$$
|z|^{2}=\left|c_{1}\right|^{2}=\frac{b^{2}+c^{2}}{\left(a^{2}+c^{2}\right)^{a / b}}, \quad\left|z^{\prime}\right|^{2}=\frac{1}{\left(a^{2}+c^{2}\right)^{a / b}}, \quad\left\langle z, c_{1}\right\rangle=\left\langle z, \mathrm{i} c_{1}\right\rangle=0
$$

Hence the Lagrangian immersion L is congruent to Case (31).
If the metric tensor is given by (2.4), then the corresponding PDE system is given by

$$
\begin{align*}
& L_{s s}=\mathrm{i} \frac{c^{2} \mathrm{e}^{-2 b s}-2 a^{2}}{\sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}} L_{s}-L, \quad L_{s t}=\left(\mathrm{i} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}+b\right) L_{t} \\
& L_{t t}=\left(\mathrm{i} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}-b\right) \mathrm{e}^{2 b s+2 \theta(t)} L_{s}+\left(\mathrm{i} f(t)+\theta^{\prime}(t)\right) L_{t}-\mathrm{e}^{2 b s+2 \theta(t)} L \tag{2.7}
\end{align*}
$$

with $a=\sqrt{1+b^{2}}$. After solving the first two equations of (2.7) we have

$$
\begin{align*}
L= & z(t)\left(a+\mathrm{i} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)^{a / b} \mathrm{e}^{(a+b) s-\mathrm{i} b^{-1} \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}} \\
& +c_{1} \frac{\left(c^{2}-\mathrm{e}^{2 b s}\right)\left(c^{2}-2 \mathrm{e}^{2 b s}\left(a^{2}+\mathrm{i} a \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)\right)^{a / 2 b}}{\left(c^{2}-\mathrm{e}^{2 b s}\left(a^{2}+b^{2}+2 \mathrm{i} b \sqrt{c^{2} \mathrm{e}^{-2 b s}-a^{2}}\right)\right)^{1 / 2}} \tag{2.8}
\end{align*}
$$

for some vector c_{1} and vector function z. By substituting (2.8) into the last equation of (2.7) we obtain

$$
z^{\prime \prime}(t)-\left(\mathrm{i} f(t)+\theta^{\prime}(t)\right) z^{\prime}(t)+c^{2} \mathrm{e}^{2 \theta(t)} z(t)=0
$$

Moreover, it follows from (2.8) and the metric tensor that

$$
|z|=\left|c_{1}\right|=c^{-(a+b) / b}, \quad\left|z^{\prime}\right|=\mathrm{e}^{\theta(t)} c^{-a / b}, \quad\left\langle z, c_{1}\right\rangle=\left\langle z, \mathrm{i} c_{1}\right\rangle=0
$$

Therefore we may conclude that L is congruent to Case (32).
It is straightforward to verify that the three immersions defined in Cases (30)-(32) are Lagrangian surfaces of constant curvature in $C P^{2}(4)$.

Reference

[1] B.-Y. Chen, Classification of Lagrangian surfaces of constant curvature in complex projective planes, J. Geom. Phys. 53 (2005) 428-460.

[^0]: * Tel.: +1 517353 4670; fax: +1 5174321532 .

 E-mail address: bychen@math.msu.edu.

