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Three additional families of
Lagrangian surfaces of constant curvature

in complex projective plane
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Abstract

Three additional families of Lagrangian surfaces of constant curvature in complex projective plane
CP2(4) shall be added to the list of Theorem 1 in my article [B.-Y. Chen, Classification of Lagrangian
surfaces of constant curvature in complex projective planes, J. Geom. Phys. 53 (2005) 428–460].
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1. Three additional families

Beside (1)–(29), the following three families of Lagrangian surfaces of constant curvature
shall be added to the list in Theorem 1 of my earlier article[1].
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(30) Lagrangian surfaces of positive curvature b2 defined by π ◦ L with

L = ((sinbs)1−iab−1
, (cosbs)1−iab−1

z(t))

with a = √
1 − b2, b ∈ (0, 1), and z(t) is a unit speed Legendre curve in S3(1) ⊂

C2.
(31) Lagrangian surfaces of negative curvature −b2 defined by π ◦ L with

L =
(
a coshbs + i

√
c2 − a2 sinh2 bs

)a/b

×

 z(t) sinhbs

eib−1c tanh−1(c coshbs/
√

c2−a2 sinh2 bs)
,

√
b2 + c2 − sinh2 bs e−(ia2(b2+c2)/(b2(a2+c2))) cot−1(b coshbs/

√
c2−a2 sinh2 bs)

√
b2 + c2(a2 + c2)a/2b e(ic2/(b2(a2+c2))) tan−1(b coshbs/

√
c2−a2 sinh2 bs)


,

where c is a positive number, a = √
1 + b2 and z(t) is a Legendre curve of constant

speed (a2 + b2)−a/2b in S3(r) ⊂ C2 with radius r = (a2 + c2)−a/2b/
√

b2 + c2.
(32) Lagrangian surfaces of negative curvature −b2 defined by π ◦ L with

L =


z(t)

(
a + i

√
c2 e−2bs − a2

)a/b

e(a+b)s−ib−1
√

c2 e−2bs−a2
,

(c2 − e2bs)
(
c2 − 2 e2bs

(
a2 + ia

√
c2 e−2bs − a2

))a/2b

c(a+b)/b
(
c2 − e2bs

(
a2 + b2 + 2ib

√
c2 e−2bs − a2

))1/2


 ,

where c is a positive number, a = √
1 + b2 and z(t) is a Legendre curve with speed

eθ(t) c−a/b in S3(r) ⊂ C2, r = c−1−a/b.

2. Remarks

We follow the same notation as[1]. For Case (I.ii.b.2.3) in article[1], the solution (5.56)
of system (5.55) is degenerated wheneverc2 = a2. So Case (23) in Theorem 1 of[1] occurs
only under the conditiona2 �= c2.

Whena2 = c2, system (5.55) reduces to

Lss = ia(tanbs − cotbs)Ls − L, a =
√

1 − b2, Lst = (ia − b) tanbsLt,

Ltt = (b + ia) sinbs cosbsLs + if (t)Lt − cos2 bsL. (2.1)
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After solving the first two equations of this PDE system we obtain

L = c1(sinbs)1−ia/b + z(t)(cosbs)1−ia/b (2.2)

for some constant vectorc1 and vector functionz(t). By substituting(2.2) into the last
equation in(2.1) we havez′′(t) − if (t)z′(t) + z(t) = 0. By applying these and the metric
tensor of the Lagrangian surface we may obtain|z| = |c1|2 = |z′(t)| = 1 and 〈c1, z〉 =
〈c1, iz〉 = 〈z′, iz〉 = 0. Hence we obtain Case (30) after choosing suitable initial condi-
tions.

For Case (1.ii.b.4) the following two metric tensors shall also be considered:

g = ds ⊗ ds + sinh2(bs + θ(t)) dt ⊗ dt, (2.3)

g = ds ⊗ ds + e2bs+2θ(t) dt ⊗ dt. (2.4)

If (2.3) holds, Eq. (5.34) of[1] yields µ2 = p2(t) csch2(bs + θ(t)) − a2 with a =√
1 + b2 for somep(t) > 0. Sinceµ = µ(s), we see thatp(t) csch(bs + θ(t)) depend on

s. Thusp(t) andθ(t) must be both constant as in Case (1.ii.c.1) of[1]. So we may assume
θ = 0 by applying a suitable translation. Let us denote the constantp by c. Thus the PDE
system corresponding to (5.72) of[1] becomes

Lss = i
c2 csch2 bs − 2a2
√

c2 csch2 bs − a2
Ls − L,

Lst =
(

i
√

c2 csch2 bs − a2 + b cothbs
)

Lt,

Ltt =
(

i
√

c2 − a2 sinh2 bs − b coshbs
)

sinhbsLs + if (t)Lt − sinh2 bsL (2.5)

with a = √
b2 + 1. After solving the first two equations of this system we obtain

L =
(
a coshbs + i

√
c2 − a2 sinh2 bs

)a/b

×



z(t) sinhbs

eib−1c tanh−1(c coshbs/
√

c2−a2 sinh2 bs)

+ c1

√
b2 + c2 − sinh2 bs e−(ia2(b2+c2)/b2(a2+c2)) cot−1(b coshbs/

√
c2−a2 sinh2 bs)

e(ic2/b2(a2+c2)) tan−1(b coshbs/
√

c2−a2 sinh2 bs)




(2.6)

for some vectorc1 ∈ C3 and vector functionz(t). By substituting(2.6)into the last equation
in (2.5)we obtain

z′′(t) − if (t)z′(t) + (b2 + c2)z(t) = 0.
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Since|L| = |Ls| = 1, |Lt| = sinhbs and〈Ls, iLy〉 = 0, we obtain from(2.6) that

|z|2 = |c1|2 = b2 + c2

(a2 + c2)a/b
, |z′|2 = 1

(a2 + c2)a/b
, 〈z, c1〉 = 〈z, ic1〉 = 0.

Hence the Lagrangian immersionL is congruent to Case (31).
If the metric tensor is given by(2.4), then the corresponding PDE system is given by

Lss = i
c2 e−2bs − 2a2
√

c2 e−2bs − a2
Ls − L, Lst = (i

√
c2 e−2bs − a2 + b)Lt,

Ltt = (i
√

c2 e−2bs − a2 − b) e2bs+2θ(t)Ls + (if (t) + θ′(t))Lt − e2bs+2θ(t)L (2.7)

with a = √
1 + b2. After solving the first two equations of(2.7)we have

L = z(t)(a + i
√

c2 e−2bs − a2)a/b e(a+b)s−ib−1
√

c2 e−2bs−a2

+ c1
(c2 − e2bs)(c2 − 2 e2bs(a2 + ia

√
c2 e−2bs − a2))a/2b

(c2 − e2bs(a2 + b2 + 2ib
√

c2 e−2bs − a2))1/2
(2.8)

for some vectorc1 and vector functionz. By substituting(2.8)into the last equation of(2.7)
we obtain

z′′(t) − (if (t) + θ′(t))z′(t) + c2 e2θ(t)z(t) = 0.

Moreover, it follows from(2.8)and the metric tensor that

|z| = |c1| = c−(a+b)/b, |z′| = eθ(t) c−a/b, 〈z, c1〉 = 〈z, ic1〉 = 0.

Therefore we may conclude thatL is congruent to Case (32).
It is straightforward to verify that the three immersions defined in Cases (30)–(32) are

Lagrangian surfaces of constant curvature inCP2(4).
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